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Abstract
1. Motion vision is crucial in the life of animals, in controlling locomotion, in foraging, 

for predator evasion and in communication. However, information on the condi-
tions for motion vision in natural environments is limited. Advancing knowledge of 
the ecological limitations that affect functional behaviour requires novel 
methodologies.

2. To explore motion ecology in more detail we describe an innovative method that 
integrates evolutionary biology with digital arts. A visualization tool that simulates 
three spatial dimensions plus movement through time, 3D animation is an innova-

tive approach to understand dynamic environments. Animal signalling systems 
have provided useful insights into ecological limitations on behaviour, and we 
 demonstrate the utility of our approach by examining motion displays of lizards 
surrounded by plant motion noise.

3. The effectiveness of signals in noise was considered under different circumstances, 
and in each case, we had complete control over the simulations. We used these 
scenarios to both validate our approach and to demonstrate its potential. The rel-
evance to motion signalling of prevailing wind and resultant plant motion is now 
well established and we begin by replicating this effect and illustrate how we can 
explore this in quantitative detail. We further demonstrate its utility by providing 
novel insights into the benefits of signalling in the right place and at the right time, 
by manipulating immediate signalling backgrounds, variation in signaller–plant dis-

tances and light environments. Each of these simulations provide opportunities for 
investigation that would be impossible in nature.

4. Systematic measurements of motion ecology in detail are now achievable. In addi-
tion to insights into the evolution of motion signals, 3D environmental reconstruc-

tion will provide a test bed for other topics in the field of motion ecology, and a 
resource to enhance public engagement with science.
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1  | INTRODUCTION

To appreciate fully the forces that shape animal behaviour, it is nec-

essary to understand the information- processing tasks under relevant 

conditions. Knowledge of the environment in which animals operate 
and the sensory processing demands that mediate behaviour are cru-

cial. One important source of information for many animals comes 
from motion vision. Although much is known about the computational 
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and neural principles of motion vision, information on the conditions 
for motion vision to function in natural environments is limited and 
requires innovative methods. In this paper, we demonstrate the utility 
of three- dimensional (3D) animation as a research tool. We focus on 
animal communication to showcase the possibilities, but subsequently 
emphasize its wider application.

Important insights into the sensory and ecological limitations that 
govern behaviour have been gained from studying animal signals. 
Signals have evolved to be effective in the environment in which they 
are emitted so the diversity we see in signal structure directly reflects 
ecological factors (Endler, 1992). The physical structure of microhab-

itats can affect signal transmission (Morton, 1975), which ultimately 
constrains the kinds of signals that are most effective (Hunter & Krebs, 
1979). Environmental noise is also a major constraint on signalling 
because it competes with signals for limited sensory and cognitive 
processing abilities of receivers. To convey information effectively, an-

imals are known to adjust their signalling strategies to remain salient 
against the ambient noise background (Ord & Stamps, 2008; Peters, 
Hemmi, & Zeil, 2007). Therefore, detailed descriptions of signal struc-

ture must go hand- in- hand with the careful analysis of the structure 
and dynamics of environmental noise in a manner applicable to the 
processing constraints facing receiver sensory systems. Research into 
acoustic signals has followed this philosophy (Henry & Lucas, 2008; 
Slabbekoorn & Smith, 2002), but complementary considerations of 
 visual signals defined by movement are rare.

As visual motion is one of the most salient features in the world 
of animals, it is not surprising that the use of motion signals is wide-

spread in the animal kingdom, from mammals (Rundus, Owings, Joshi, 
Chinn, & Giannini, 2007) to invertebrates (Elias, Land, Mason, & Hoy, 
2006). However, motion signal efficacy is affected by the motion of 
wind- blown plants (Fleishman, 1986; Peters, 2008), which varies from 
moment to moment as environmental conditions change. Quantifying 
motion signals and noise in a meaningful way is not straightforward 
and requires a strategy that outlines the processing demands facing 
receivers (Peters, 2013). Physical measurements of plant movements 
will not be sufficient for quantifying motion noise, as they do not 
quantify plant motion in a manner that is relevant to the detection 
filters of receivers. A solution is needed that allows for simultaneous 
consideration of the physical movements of plants, variation in mi-
crohabitat structure, environmental variables and animal signals. The 
ability to systematically manipulate one or more of these components 
would also be beneficial. To achieve this in nature would be impracti-
cal. Even multiple synchronized cameras, filming at different times of 
the day throughout the year, would not sample the range of conditions 
required to characterize fully the image motion environment. Also, we 
would not achieve the level of control required to isolate key parame-

ters, or to systematically manipulate one or more components.
However, these goals are achievable in simulated environments 

created with sophisticated 3D animations. The use of realistic 3D 
models of signalling animals and habitats offers great potential for 
exploring the evolutionary constraints on movement- based signals. 
Animations have been used to manipulate visual signals for playback 
experiments in multiple systems including spiders (Harland & Jackson, 

2002), birds (Watanabe & Troje, 2006), snakes (Nelson, Garnett, 
& Evans, 2010), lizards (Peters & Evans, 2003) and in fish (Zbinden, 
2004). However, while past studies have created 3D environments for 
virtual reality experiments (Dolins, Klimowicz, Kelley, & Menzel, 2014), 
the full power of 3D animation has not been harnessed to simulate 
signalling environments, and certainly not as a computational platform 
for quantifying the role of planted environments in dictating signal 
evolution.

In this paper, we describe the construction of virtual environments 
to explore the interaction of motion signal and motion noise. We first 
outline the steps involved in reconstructing a signalling animal. This is 
followed by descriptions of the tasks required to reconstruct micro-

habitats, including the dynamic properties of wind- blown plants and 
the light environment. Finally, we discuss how simulations are filmed 
and exported for analysis, as well as the quantitative strategies for 
comparing simulations. To demonstrate the utility of this approach, we 
set up four scenarios utilizing the same signal to explore ecological 
parameters that are predicted to affect signal efficacy. Our goal was to 
demonstrate the level of control we can achieve within the animated 
environment and its ability to explore phenomena of interest in detail.

2  | MATERIALS AND METHODS

We do not provide a detailed manual for animation, but a demon-

stration of the key components in developing 3D models and building 
animations. We used Maya 2015 (Autodesk Inc.) software to create 
a virtual environment, but other options are available (see Table S1). 
Although the number of commands available to the user can be over-
whelming, free tutorials and a comprehensive knowledge network are 
available online (see also Supplementary Methods for tips to avoid 
common mistakes).

2.1 | Creating and animating the 3D model

A territorial display of a Jacky dragon (Amphibolurus muricatus) was 
elicited in the field using a tethered animal introduced to the focal 
lizard and filmed using a dual camera system. To reconstruct the 
signalling motion, we digitized the position of multiple body parts 
throughout the sequence, and subsequently combined the data from 
two camera views to reconstruct the signalling motion in 3D and 
quantify real physical amplitudes. The digitizing process utilized a free 
Matlab application for camera calibration, digitizing features of inter-
est and 3D reconstruction of movement information (Hedrick, 2008); 
see Peters, Ramos, Hernandez, Wu, and Qi (2016) and Bian, Elgar, and 
Peters (2016) for applications of this technique.

We used subdivision-modelling techniques to create our 3D mod-

els. This refers to the process of sculpturing polygons and surfaces 
and later subdividing the polygon mesh to produce smooth organic 
forms. In computer animation, the 3D model is represented in two 
parts: a surface representation used to draw the morphology of the 
character (referred to as skin or mesh) and a hierarchical set of in-

terconnected bones (called the skeleton or rig) used to animate (pose 
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and keyframe) the mesh. To start building the mesh, we broke down 
the morphology of the animal into several main parts to determine 
the overall geometry. The head and body of the lizard were mod-

elled from a basic cube. By manipulating the vertex position on the 
cube, we gradually built up the details to correspond with the phys-

ical form. We used realistic images of the animal to superimpose 
surfaces of polygons into the correct morphology, and then pull 

out the limbs and tail from the body through the same shaping pro-

cess (Figure 1a). Since the animal is bilaterally symmetrical, we only 
needed to model one side of the body and instructed the software 
to mirror the geometry offset along its axis. This helped to mini-
mize errors in creating uneven structures on both sides of the body. 
After completing the shaping process, we used average values from 
a database of morphological measurements of the Jacky dragon to 

F IGURE  1 Maya screenshots of the 
(a) lizard model, (b) texture map (left) and 
model with the texture wrapped around 
the surface (right), (c) wireframe mesh and 
skeleton and (d) joint controllers as a colour 
gradient
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make minor adjustments to the model. Finally, a digital photograph 
of lizard skin was wrapped on to the model surface (Figure 1b) in 
a process referred to as UV Mapping. The model is now ready for 
animation.

The animating process begins by creating a virtual skeleton made 
up of bones that are connected at joints (Figure 1c). Skeletons do not 
imitate real anatomy or physical processes. Rather, they are control 
objects at appropriate locations (joints) to control the deformation of 
the model. We first created a chain of joints along the limbs and body 
of the model, and then implemented individual controller objects for 
each set of joints to gain precise control of the geometry as well as 
global displacement and local movements of the model. After building 
the joints, we integrated and bound the skeleton to the model through 
a process known as skinning. In Maya, smooth skinning allows each ver-
tex to follow a limited number of joints with the amount of influence 
affected by each joint represented as a numerical scale [0,1]. This scale 
can be modified from a spreadsheet or virtually painted directly onto 
the model with the values represented as colour gradients through a 
process often named weight painting (Figure 1d). After the 3D model 
is correctly connected to the skeleton, we started the animation pro-

cess. The joint controllers became useful here, because rather than 
manipulating every joint to achieve a signal pose, the controllers act 
like the strings that a puppeteer uses to animate a puppet, and a vast 
range of movement could be achieved by a small set of control bars. 
We used position data from our frame- by- frame analysis of the display 
to set the coordinates for each controller and for all frames throughout 
the sequence. We finish with a display sequence to match our model 
species that comprises four distinct components including tail flicking, 
limb waving, push- ups and whole- body movements.

2.2 | Creating the virtual habitat

Jacky dragons inhabit woodlands and coastal heath of southeast 
Australia, and are often seen perched on fallen timber. We created 
a virtual habitat that contains relevant features rather than a spe-

cific habitat. A base plane was created first, using inbuilt geometric 
tools to sculpt an undulating landscape that reflects the local terrain 
(Figure 2a). We added realistic 3D models of trees, smaller plants and 
logs, created using the same sculpting method as the lizard. These 
plants were placed in the scene using the position of the lizard as the 
centre point. We integrated plant models with a script that guides 
plant movements. Within Maya, the scripts of any physical move-

ments are built on physically accurate equations, which can be pre-

cisely manipulated using a slider bar, in order to generate realistic 
plant movements under different wind conditions (Akagi & Kitajima, 
2006). Realistic plant models also can be purchased from third-party 
providers that are fully rendered with textures, lighting and wind- 
motion animation specifications. These models are easy to manipu-

late and can be tailored to specific requirements. After deploying the 
major plant species in the environment, the next stage of crafting the 
environment was to paint in smaller grasses using Maya’s Paint Effects 

brush system (Figure 2b). The grass has an integrated wind controller 
that allows for easy animation in the final stages of the process. The 

grass clumps can be linked according to location within the habitat, as 
location will affect how plants react to wind.

With the ground landscape completed, lighting and shadows were 
added to the scene. The simulation of light environments are based 
on physically accurate lighting coefficients (Iones, Krupkin, Sbert, & 
Zhukov, 2003). A single directional light was added to simulate the 
sun and thereby create naturally over- casting shadows from rocks, 
logs and plants. Smaller area lights were also added to illuminate the 
main character in the scene (the lizard), but were for the purposes of 
these demonstrations only and should be excluded for greater realism 
(Figure 2c). The position and scale of lights can be controlled using 
transformation tools within Maya.

2.3 | Filming within a virtual environment

Virtual cameras are placed in the scene and manoeuvred into posi-
tion using simple translocation functions within Maya. Each virtual 
camera is invisible to other cameras and so cannot obscure the scene 
from any other viewpoints. Once a specific camera is selected, the 
software will display the scene as if we are looking through a real 
camera (Figure 2d). Attributes such as viewing angle, depth of field, 
focal points and zoom/scale can be easily adjusted. For this paper, we 
disabled depth of field functionality, as we want all objects within the 
scene to be clear and focused. Finally, the Maya scenes were rendered 
as complete audio video interleave files at 25 frames- per- second.

2.4 | Demonstrations within a virtual environment

To demonstrate the utility of our approach, we selected four scenarios 
in which the detection of motion signals is predicted to be affected by 
habitat structure and environmental conditions:

1. Prevailing wind conditions—the movement of wind-blown plants 
plays an important role in signalling behaviour (Ord & Stamps, 
2008; Peters & Evans, 2007). To explore this, we used the 
same scene, viewed from the same angle and featuring the 
same signal. The only difference between the sequences was 
the wind level and resultant plant movements. We created three 
animation sequences featuring no wind, moderate wind and 
strong wind conditions.

2. Local backgrounds—Motion vision is strongly influenced by local 
backgrounds (Peters, Hemmi, & Zeil, 2008), therefore we cre-

ated two animation sequences that were identical, except for 
the object immediately behind the displaying lizard. We used a 
large rock in one sequence, and a plant (Lomandra sp.) in the 
second sequence (Figure 3a), with strong wind conditions in 
each. These sequences allow us to consider whether the imme-

diate background in a noisy environment can improve signal ef-
ficacy in a manner similar to birds that create stages to ensure 
strong chromatic contrast of colourful ornaments (Endler & 
Thery, 1996).

3. Signaller–plant distances—The position of the signaller relative to 
surrounding plants will affect perceived motion amplitudes, which 
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might be important for determining signal effectiveness (Peters, 
2010). We created two sequences to examine this prediction, with 
the difference between sequences being the position of the lizard 
relative to the dominant grass: at the same distance from the re-

ceiver as the plant, or positioned closer to the receiver than the 
plant (Figure 3b).

4. Different light environments—The light environment is crucial for 
static visual signalling systems (Endler, 1992). As motion vision 
mechanisms are known to be highly dependent on brightness 
and contrast, it is possible that the distracting effects of 

shadows and variation in the light environment alters the rela-

tive effectiveness of motion signals. We created a spotlight inte-

grated with motion patterns of over-casting tree branch 
shadows. The light was oriented in the same direction directly 
facing our lizard model in each of the sequences, but we changed 
the lighting intensities by manipulating the luminosity of the 
spotlight scale from zero to ten, and as light intensity increases 
so does the over-casting shadow. We developed two sequences 
with constant wind level but different light intensities: natural 
lighting and intense shadows (Figure 3c). These sequences 

F IGURE  2 Modelling the microhabitat 
starts with (a) an undulating base plan 
with sand texture before (b) the inclusion 
of major objects—trees, rocks, logs and 
grasses. (c) A static spherical photograph is 
applied to the background and directional 
lights (orange lines) for the scene. (d) Final 
scene from one camera view
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enabled us to explore the interaction between actual plant 
movements, shadows generated by plant movements and varia-

tion in light intensity.

All animation sequences were 176 frames duration (c. 7 s at 25 fps) 
and exported at HD resolution (1,920 × 1,080 pixels) for analysis (see 
Movie S1).

2.5 | Scene analysis

Videos generated in the virtual environment (Figure 4a) can be ana-

lysed in the same way as videos filmed in nature. Visual motion is 
computed from correlated changes in brightness in neighbouring 
photoreceptors and a computational implementation of this is the 
correlation- type elementary motion detector (EMD). Multiple EMDs 

F IGURE  3 Representative frames from animations to examine the effect of (a) different backgrounds, (b) signaller–plant distances and  
(c) different light environments

F IGURE  4  (a) Rendered frames from two sequences featuring exactly the same signal but in wind- still (left) and windy conditions (right). 
Animation sequences were analysed in three ways with output from each analytical approach shown for the same frame in wind- still and windy 
sequences. (b) Visual motion computed by correlation- type elementary motion detectors in which colour indicates the direction of movement 
and saturation reflects relative speed. (c) Gradient detector models showing angular speeds irrespective of movement direction. (d) Saliency 
analysis using motion information alone predicts focal points for attention
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interconnected in a grid can be used to model motion in 2D scenes 
captured on video (Zanker, Hofmann, & Zeil, 1997; Figure 4b). This 
approach allows for biologically plausible scene analysis by incorpo-

rating knowledge of the visual capabilities of our study animals, such 
as spatial resolution and temporal integration times. The gradient 
detector model for motion analysis is an alternative that does not 
seek to replicate biological visual systems (Figure 4c). The choice 
between these two might depend on the nature of the motion as 
EMDs are suggested to perform best in low signal- to- noise ratios, 
whereas gradient detectors are more suited to high signal- to- noise 
situations (Potters & Bialek, 1994). An alternative option is to use sa-

liency analysis, which seeks to identify the regions of the scene that 
attract the most attention. Itti, Koch, and Niebur (1998) described a 
computational model for saliency- driven bottom- up selective atten-

tion to objects, which involved scanning a saliency map computed 
from local feature contrasts, including motion. In Figure 4d we used 
graph- based visual saliency, which uses local computations, as well 
as global information, to obtain a saliency map predicting salient 
areas of the scene (Harel, Koch, & Perona, 2006).

To quantify differences between sequences within each scenario, 
we used sequences featuring lizard displays in the absence of plant 
movement to identify where motion occurred (baseline) and to gen-

erate a binary mask representing areas of known lizard movement 
for each frame of the animation (see Figure S1). By multiplying the 
saliency data with the binary mask, we obtained estimates for the rel-
ative salience of the lizard movement for each frame (Figure 5a). The 
no wind sequence was used as a baseline for the changing wind con-

ditions and different light environments. A new baseline sequence was 
created for the comparison of different backgrounds, while separate 
baseline sequences were created for the near and far signaller–plant 
distance sequences.

3  | RESULTS

We created multiple animation sequences to explore the role of pre-

vailing wind, background objects, signaller–plant distances and differ-
ent light environments, and quantified the relative change in saliency 
of lizard displays. We obtained saliency measures frame by frame for 
each sequence, as shown in Figure 5a (bottom panel) for varying wind 
conditions. Saliency scores range [0,1], but the threshold for detec-

tion by a receiver would need to be empirically determined. Here, we 
selected 0.8 as a conservative threshold for reliable detection, and 
represented detectability as raster plots (Figure 5a, top panel). The 
number of frames in which a given sequence exceeds this threshold 
was then summed (Figure 5b). As shown, the proportion of the no 
wind (or baseline) sequence is less than one because the lizard is not 
moving in every frame. We then determined the relative percentage 
change in effectiveness from the baseline for the other two sequences 
(Figure 5b inset). Consideration of the data need not be limited to a 
single threshold value and so we computed the relative change in effi-
cacy from the baseline for the full range of saliency values (Figure 5c), 
and use this approach to consider each of our signalling scenarios.

As expected, the predicted effectiveness of lizard displays declines 
with prevailing wind (Figure 5c). Manipulating the immediate back-

ground, from a noisy plant to a static rock, resulted in only a modest 
improvement in effectiveness at higher threshold values (Figure 6a). 
However, the manipulation we imposed retained the same compo-

nents in each scene, just in different positions, so the improvement 
represents the change in figure- ground segmentation in local regions 
of the scene. Manipulating signaller position relative to plants, while 
keeping all other components the same, resulted in a modest efficacy 
advantage for signals separated from plants (Figure 6b), as suggested 
elsewhere (Peters, 2010). Results for manipulation of the light envi-
ronment were somewhat unexpected. Under both moderate and 
strong wind conditions, increasing shadows and areas of intense light 
served to enhance the signal (Figure 6c).

4  | DISCUSSION

An interdisciplinary approach that unites biology with the creative 
digital arts is proposed as an innovative way to quantify the relation-

ship between animal behaviour and environmental characteristics. We 
presented a quick road map to demonstrate the research applicability 
of 3D animation as a laboratory tool by focussing on motion signalling 
of lizards under a range of circumstances. This was carefully chosen 
to provide a broad overview of the capabilities afforded by this simu-

lation tool. However, we emphasize below that the foundations we 
lay here could be extended and applied to other topics. We not only 
anticipate theoretical advancements in sensory ecology and behav-

iour, but also foresee derived benefits for education and community 
engagement in ecology.

4.1 | One habitat—Multiple opportunities

4.1.1 | Controlling environmental context during 
motion signalling: From simulation to replication

We explored several environmental constraints on motion signal 
efficacy in a virtual environment. Wind-induced plant motion as a 
major source of motion noise is well known but rarely quantified in 
detail (but see, Fleishman, 1986; Peters, 2008). We have simulated 
three wind conditions and shown how increasing wind intensity af-
fects motion signal efficacy. With the ability to systematically in-

crease wind speed within our animation environment, we will obtain 
a more complete picture of how wind- induced plant motion affects 
signal efficacy, and predict changes to signal structure required 
if they are to remain salient in different wind environments. We 
have also quantified the effect of immediate local background and 
signaller–plant distances, as well as variation in light intensity and 
over- casting shadows. These have not been explored previously in 
the context of motion signalling. Importantly, all our simulations 
provide us with complete control of the signalling context, which 
is unparalleled in studies of motion signalling and not achievable 
in nature.
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Here we relied on the dynamic power of the software to faith-

fully simulate plant species and their specific movements. Underlying 
these tools are in- depth studies to determine physical equations of 
motion that achieve realistic animations of wind- induced vegetation 
movements (Akagi & Kitajima, 2006; Zhang et al., 2007). In fact, de-

formation of any type of object in an animated environment, such 
as hair movements or clothes dynamics, are achieved using physics- 
based dynamic simulation systems (Stam, 2009). We can thus be rel-
atively confident that our simulated plant movements are realistic. 
However, it is possible to recreate actual habitats using information 
on the local terrain, topography and spatial distribution of plants. This 

includes creating plant models that match plant shape, branching 
structure and stem/leaf characteristics. It is also possible to replicate 
the dynamic properties of a given plant in nature. To achieve this, a 
marker- less motion capture technique could be employed to recreate 
the geometric structure of actual plants, as well as the dynamic prop-

erties of their interaction with wind from 2D footage of real plants 
(Diener, Reveret, & Fiume, 2006). Briefly, the technique utilizes veloc-

ity information obtained from optic flow analysis and uses statistical 
clustering methods to organize features into a hierarchical structure. 
This is subsequently refined according to geometrical structure, and 
the final 3D hierarchical structure is then used as a motion controller 

F IGURE  5 An illustration of how changing wind conditions influence the efficacy of the lizard signal. (a) Bottom panel: Maximum saliency 
score over time in regions of the image frame that are known to feature lizard display movement (determined from analysis of the no wind 
sequence). Lines are shown for the three animation sequences: no wind (black), moderate wind (grey) and strong wind (red). Top panel: Raster 
plot for the three sequences depicting frames in which maximum saliency scores exceed 0.8. (b) The number of frames in each of the three 
animation sequences that exceeded the 0.8 threshold value. Inset: Percentage difference in efficacy from no wind sequence for the lizard display 
in moderate and strong wind. (c) Relative change in efficacy as a function of saliency threshold value for moderate (grey) and strong (red) wind 
conditions
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for animating plant models. Individual researchers are therefore able 
to determine whether simulation or replication of plant movements is 
appropriate for their objectives. The simulation of real- world lighting 
conditions is also achievable. In Mental Ray®, a rendering plug- in for 
Maya, a high- dynamic range photometric lighting system (Sun & Sky) 
allows users to select lighting conditions according to the exact date, 
time and location. Rendering engines of this kind use physically based 
computational algorithms when rendering (Kniss, Premoze, Hansen, 
Shirley, & McPherson, 2003). This means the simulations are accurate 
and predictable as they are designed to follow physical laws (Moeck 
& Selkowitz, 1996).

The creation of simulated environments provides opportunities to 
predict the consequences of habitat modification in the context of mo-

tion signal efficacy. Motion noise environments will be altered follow-

ing events that change the plant environment. Natural events like fire 
and storm (wind and rain) damage might have important consequences 
for inhabitants because it changes the noise environment in important 
ways. Storms often modify the environment by relocating the position 
of plants, which might change the spatial distribution of noise. In the 
case of low- severity fire events, many plants will be impacted by the re-

moval of leaves and higher order branches, which are a dominant part 
of the noise environment (Peters, 2013), and motion noise might be 
reduced dramatically. The signals of species like the Jacky dragon might 
become highly conspicuous. The costs of highly conspicuous signals 
include wasted energy and increasing the likelihood of detection by 
predators. Under conditions of increased predation risk, signallers are 
expected to modify their signalling behaviour accordingly (Steinberg 
et al., 2014). Simulated environments can be used to replicate these 
events and enable us to quantify before and after effects as it relates 
to motion signalling, and to predict changes in signalling.

4.1.2 | Extension: Dynamic scenes in the context of 
colour vision

As recent research supports a role for chromatic input to motion 
processing (Cropper & Wuerger, 2005), it is worthwhile to consider 
dynamic scenes also in the context of colour vision. An important as-

sumption in our simulations is that the RGB colour space we use is 
relevant to the receiver. However, our rendered scenes are optimized 
for human colour vision systems, which comprise short (blue), me-

dium (green) and long (red) wavelength cones. We can convert ren-

dered scenes from standard RGB to a colour space that represents 
the relative response of the three types of cones, known as the LMS 
colour space. Scene analysis, such as the saliency approach adopted 
here, could then consider animations separately for each cone. 
Furthermore, rendered animations could be post- processed to model 
how colour vision deficiencies affect the information available for mo-

tion vision to operate. Human observers with normal colour vision see 
scenes differently to others that lack medium (deuteranopia) or short 
(tritanopia) wavelength cones (Figure 7). Interestingly, our simulations 
of colour vision deficiencies suggested that the salience of lizard dis-

plays is reduced, particularly for deuteranopia, despite being identical 

F IGURE   6 Change in efficacy for sequences examining the 
effect of (a) immediate background, (b) signaller–plant distances 
and (c) light environments as a function of changing saliency 
threshold
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movements of both animal and plants. The RGB conversions we used 
to generate these colour- deficient sequences could be modified to 
represent a variety of species with cone sensitivities similar to our 
own. Furthermore, colour conversions of textures can be undertaken 
at the time of model creation, and Tedore and Johnsen (2016) provide 
an excellent description of how to replicate colour vision capabilities 
of animals with very different spectral sensitivities.

4.2 | Further applications in motion ecology

As motion is a fundamental source of information for many animals, 
replicating natural environments in sophisticated detail within a vir-
tual environment can provide a test bed for exploring motion ecol-
ogy more broadly. Through systematic manipulation of environmental 
features and animal movements, we can understand more clearly 
the image motion computation requirements for a variety of func-

tional behaviours. For example, movement is a key requirement for 
the identification of prey and predators (Figure 8a). In the case of 
adult Jacky dragons, movement breaks the camouflage of an other-
wise cryptic lizard and might be detected by a nearby avian preda-

tor, such as laughing kookaburras (Dacelo novaeguineae) that perch 

on elevated vantage points and scan the environment for potential 
prey (Figure 8b). However, the image motion generated by a looming 
kookaburra might in turn be detected by lizards (Figure 8c) and eva-

sive action taken. Animations provide a powerful way to understand 
these interactions in greater detail (Nelson et al., 2010), including a 
novel implementation of the use of animal- borne cameras to quantify 
changing visual motion cues as animals move (Kane & Zamani, 2014). 
Following on from this, as animals move through their environment 
they generate optic flow that is used for navigation (Srinivasan, Zhang, 
Lehrer, & Collett, 1996). Our virtual simulations could allow for con-

trolled, repeatable investigations of the consequences for optic flow 
under a variety of environmental circumstances by utilizing animal- 
borne cameras in a virtual environment.

4.3 | Multiple habitats—A world of possibilities

4.3.1 | Translocations in a simulated environment

Environments feature a variety of plant species and multiple exem-

plars of the same species, yet each plant will move differently in re-

sponse to wind due to differences in plant structure and geometry 

F IGURE  7 Post- processing of an animation sequence to simulate normal human colour vision (top row) and colour vision deficiencies: 
deuteranopia (middle row) and tritanopia (bottom row). For each, the functioning cones are shown (left column) along with a representation 
of the scene utilizing the functioning cones (centre column), and a salience map for a single frame (right column). Conversion of images to 
deuteranopia and tritanopia undertaken according to (Machado, Oliveira, & Fernandes, 2009)
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(Peters, 2013). In addition to plant geometry, wind- induced plant 
movements are determined by habitat location and topography af-
fecting relative exposure to wind (Hannah, Palutikof, & Quine, 1995), 
and the presence of other plants in the environment that affect the 
characteristics of wind (De Langre, 2008). Therefore, different micro-

habitats represent distinct image motion environments (Peters, 2008), 
and this variation must be a crucial determinant of motion signal struc-

ture. It has been informative to broadcast acoustic signals in differ-
ent environments to explain the relationship between environment 
and behaviour (Slabbekoorn & Smith, 2002), but analogous options 
for motion signals are not available and translocating species across 

different habitats is restricted by government regulations in most 
circumstances. However, detailed reconstructions of multiple signal-
ling environments provide an exciting opportunity to consider how 
the signals of one species would “perform” in other environments. 
Translocating species between habitats in a simulated environment 
is an exciting extension to the work herein (Figures 9 and S2). The 
Jacky dragon (Figure 9a) is common in coastal heath of south- eastern 
Australia, while the long- nosed dragon (Gowidon longirostris; Figure 9b) 
can be found in rocky gorges of central and western Australia. Both 
species generate complex motion signals, but the motion noise envi-
ronments are very different. Using 3D animation as a sophisticated 

F IGURE  8  (a) 3D reconstruction of a laughing kookaburra (Dacelo novaeguineae) approaching a basking lizard. Respective viewpoints of the 
(b) approaching avian predator and (c) lizard prey

(a)

(b) (c)

F IGURE  9 Recreating different microhabitats in 3D animations enables consideration of motion signal efficacy of “translocated” species. (a) 
Jacky dragon (Amphibolurus muricatus) habitat and close- up view of a (b) Jacky dragon and (c) long- nosed dragon (Gowidon longirostris) in this 
coastal environment. (d) Long- nosed dragon habitat and close up view of (e) long- nosed and (f) Jacky dragons in this rocky gorge
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simulation tool we can quantify the effectiveness of signals in each of 
these habitat types and predict the extent to which simple plasticity in 
signalling will mediate different environmental conditions.

4.3.2 | Whole new worlds

Our objective is to demonstrate that virtual technologies can be used 
to examine important questions in animal ecology. The simulations 
we present herein, and which we believe showcases the utility of 3D 
animation, focuses on motion signalling in terrestrial environments at 
a scale of metres. This represents our core focus, but the method is 
not so limited. We see these tools being applicable to understanding 
how animals interact with their environment from the perspective of 
a viewer located anywhere in the environment. Virtual environment 

reconstruction encourages a fresh look at the physical world and we 
encourage others to consider very different types of environments 
(Figure 10a), and vastly different scales—from hundreds of metres to 
macro- level analysis (Figure 10b–d).

5  | CONCLUSION

Our method is an extension in the use of 3D technology and repre-

sents a powerful tool for motion ecology owing to its ability to faith-

fully simulate lighting, shadows, geometry, motion and time- based 
transitions. The control we are afforded would be impossible to 
achieve in nature. While it is necessary to ground- truth simulations 
using data from real environments (Chouinard- Thuly et al., 2017), 

F IGURE  10  (a) Frame sequence of 
an underwater scene featuring a short- 
finned eel (Anguilla australis). Rendered 
frames showing 3D environments for 
consideration at (b) landscape, (c) habitat 
and (d) macro- spatial scales

(a)

(b)

(c)

(d)
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we can now address recalcitrant topics in animal behaviour and sen-

sory ecology that concerns the relevance of environmental motion. 
Importantly, animation is not only an innovative tool for biology, it is 
an exciting opportunity to engage public attention, and as a teaching 
tool for students. With modest additional work, the simulated micro-

habitats could be repurposed as interactive applications for tablets, 
touch screen devices and exhibition displays in museums and schools 
that provide for better user experiences and enhance opportunities 
for self- guided learning. The connections we build between science 
and the general public will be necessary for preserving valuable natural 
resources for future generations.
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